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J. Phys.: Condens. Matter 1 (1989) 7037-7043. Printed in the UK 

Exact results for a spin-one Ising model with random 
crystal field 

Viktor Urumov 
Institut za Fizika, Univerzitet ‘Kiril i Metodij’ p.fah 162, Skopje 91001, Yugoslavia 

Received 11 April 1989 

Abstract. An king spin-one model with an arbitrary distribution P ( A )  of crystal field 
interaction A ,  described with Blume-Emery-Griffiths Hamiltonian is considered for the 
annealed case in which the system is in complete thermal equilibrium. The critical tem- 
perature, under some restrictive condition on the interaction parameters, is obtained exactly 
for the honeycomb lattice. 

Ising models and their many variations are encountered in different fields of physics and 
continue to be a subject of current interest. The randomness as a natural phenomenon 
is omnipresent and difficult to deal with. The theory of random magnets was recently 
reviewed (Fisher eta1 1988) considering the frozen-in disorder. In the following we shall 
be interested in the opposite extreme of annealed disorder in which the system is allowed 
to reach complete thermal equilibrium. The purpose of this paper is to present some 
exact results concerning a model with random crystal field. 

The specific model under consideration is known as Blume-Emery-Griffiths spin- 
one model (Blume et al 1971) and it is defined by the Hamiltonian 

where the pair interaction XL, includes bilinear (J) and biquadratic ( K )  exchange inter- 
action between nearest neighbours 

X I ,  = -JS,S, + K S $ y  (4 
while the single site term 

represents the crystal field (A,) interaction energy which is explicitly specified by an 
indicator function f k  that is 1 if the crystal field strength is A, and 0 otherwise. We shall 
generally assume that the crystal field strength obeys some arbitrary distribution function 
P ( A )  but for convenience, the derivation that follows is given for discrete Ak.  It is 
supposed that the spin variables Si on any lattice site can take three different values 0 
and +.1. It is also supposed that the lattice has a coordination number 3 and the final 
calculations are carried out for the honeycomb lattice. 
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Considering the system in complete thermal equilibrium it is our aim to evaluate the 
grand partition function 

where P = l / k T ,  k is the Boltzmann constant, T the absolute temperature, Ek the 
chemical potential coupled to the indicator fk and the double summation is carried 
over all possible configurations of the spin variables and indicator functions. Here the 
calculation closely follows the lines previously set by Thorpe and Beeman (1976) in their 
consideration of spin-2 king models with random exchange interactions. 

Taking the partial trace over (fk}, we obtain 

where the last equation defines the functions C and D 

c = 2" exp(-D) = X I / &  (6) 

with 

In this manner the initial problem is reduced to a model defined on the same lattice 
with an effective crystal-field interaction D which is temperature-dependent function 
and the elements of randomness are incorporated in its structure. Otherwise D is equal 
for all lattice sites. 

Some exact results for this model were obtained recently: Horiguchi (1986) has 
mapped the model onto the KagomC spin-4 lattice, Wu (1986) gave an independent 
derivation and subsequently (Wu and Wu 1988) established the equivalence of the model 
with an external field with an Ising model in a nonzero external field and the author 
obtained the magnetisation (Urumov 1987) and the critical temperature for the site- 
diluted model (Urumov 1989). Most of the above results were obtained under some 
restriction on the parameters of the system, as is the case with the subsequent derivations. 

Using the identity (Horiguchi 1986) 

exp(/JJS,S, - PKSIZS?) = 4 exp[Aa,(S, + S,) + B(S!  + S?)]  
o , ,== l  

which is exact under the conditions 

exp PK = cosh PJ,  (9) 

cosh 2A = exp 2PJ,  (10) 

new spin-like variables aj, are introduced on each bond connecting two neighbouring 



king model with random crystal field 7039 

Figure 1. The honeycomb and Kagome 
lattices are shown, respectively, by thin 
and thick lines. The open circles represent 
the sites occupied by s-spins, which take 
three values 0, * 1 and the full circles rep- 
resent the sites occupied by a-spins which 
can have two values, + 1 or - 1. 

sites. Figure 1 represents the original honeycomb lattice of S = 1 spins together with the 
o-spins which are lying on a KagomC lattice. Interchanging the order of summations and 
first performing the sums over { S I }  and then over the newly introduced oIj-spins, our 
model is reduced to the spin-% Ising model on the Kagome lattice. 

The grand partition function 5 is expresed exactly by 

f = 2-Nbh (CG)Nrh Zk ( F )  (12) 

where Nsh and Nbh are, respectively, the number of sites and bonds on the honeycomb 
lattice and 

G4 = ( X o  + 2Z1 e3E cosh3A)(Xo + 2Z1 e3’ ~ o s h A ) ~ / Z : ,  

e4F = (Zo + 2Z1 e3’ cosh 3A)/(C0 + 2Z1 e3’ cosh A)  

(13) 

(14) 

and Zk(F) is the partition function for the Kagome lattice which is known exactly (Syozi 
1972). The partition function Zk(F) depends on the effective interaction F defined in 
(14). 

It remains to eliminate the chemical potential & by use of 

which after some manipulation gives 

e P E k  { [ 1 + E ( F ) ]  (1 + 2e3B-PAk cosh 3A) 
(fk) = 4(Z0 + 2C, e3’ cosh 3A) 

I + 3e4F [ 1 - y]  (1 + 2e3’-PAk coshA) 

where 
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is the nearest neighbour pair correlation function on the KagomC lattice. 

expression is summed over k to give 
The formula for ( f k )  is now divided by the expression in the braces and the whole 

(fk)/{[l + $&(F)]  (1 + 2 exp(3B - PAk) cosh 3A) + 3 exp(4F) [ l  - &(F)/2] 
k 

& 
X [1 + 2 exp(3B - PAk) C O S ~ A ] }  = 

4(& + 2C, exp(3B) cosh 3A) ’ 
(18) 

Using (6) and (14) and imposing that ( f k )  is temperature independent and going to a 
continuous distribution P(A) we obtain the following relationship 

P(A)dA/{[l + $ & ( F ) ] ( l  +2exp(3B -/3A)cosh3A) +3exp(4F)[1 - &(F)/2] 

2 cosh 2A - 1 - exp(4F) 
8 exp(4F) (cosh 2A - 1) ’ 

x (1 + 2 exp(3B - PA) cosh A ) }  = (19) 

From (19) in the case without randomness, P(A) = &(A - A,) the result of Horiguchi 
(1986) is recovered. The last expression represents an integral equation for the effective 
interaction F between the nearest neighbour a-spins on the KagomC lattice. From the 
relationship (12) it is seen that our model with random crystal field becomes critical 
when the KagomC lattice becomes critical. The critical parameters for the Kagome 
lattice are known (Syozi 1972) to be 

e x p ( 4 ~ ~  = 3 + 2 d 3 ,  E(  Fc) = (1 + 2d/3)/6. (20) 

To examine the critical temperature of the random crystal field model, two particular 

In the first the distribution Pl(A) is discrete and the crystal field takes two values 
cases for the distribution function P(A) are considered. 

A, f A1 with probabilityp and 1 - p ,  respectively 

Pl(A) =p&(A - A0 - Ai) + (1 -p)6(A - A, + AI). (21) 

In the second case, uniform distribution is assumed 

The critical temperature, for the case of the discrete distribution Pl(A), as afunction 
of d = Al/A, and for variousp is shown in figure 2. It is a symmetric function under the 
substitutionp- 1 - p ,  A I +  -Al .  Using (lo),  (20) and (21), the critical temperature 
in the limit of large fluctuations d CC and for A. < 0 is found to approach the limiting 
value given by 

8(1 - p )  e4F - (1 + e4F)u 
2[4(1 - p )  e4F - U ]  

exp(2PcJ) = 

where 
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Figure 2. Plots of T, versus d = 
A ,/Ao for selected values ofp in the 
distribution function P I ( A )  and for 
Ao/J = -1. The curves A, B, C ,  D, 

-1 0 1 2 3 4 5 6 E, F, G correspond, respectively to 
p = 0; 0.2; 0.4; 0.5,0.6; 0.8; 1. 
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Figure3. Plots of T,versusp for A. = 0, A,/J  = 1 ( A ) ;  Ao/J = 1, A,/Ao = 1 (B); Ao/J  = 1, 
A1/Ao = 2 (C) and Ao/J = -1, Al/Ao = 1 (D) in the distribution function P l ( A ) .  

a = b + 3e4F [ 1 - y] ,  b = 1 + &(F) .  

The critical temperature vanishes at the critical probability 

pcl  = 1 - a/e4F = 0.447168784. 

In figure 3, the critical temperature for the same distribution is shown as a function 
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Figure 4. The critical surface kT,/J as a 
function of the mean crystal field A0/J 
and the half-width of its fluctuations 
A , / J  which define the uniform distri- 
bution P z ( A )  of crystal fields. 

of p for several values of A. and A l .  The asymptotic analysis shows that the critical 
temperature, in the case A. > 0, d= 1, vanishes at 

1 1  
p C 2  = a (p - + "-1 32b e4F = 0.175240474. 

For A. > 0, d > 1; A. < 0, d < -1 or A. = 0, A,  > 0 the critical temperature 
becomes zero for 

a 
Pc3 = p - - 0.552831216. 

The critical temperature is finite in the domain A. < 0, Id1 6 1. The critical probabilities 
for which the critical temperature vanishes, in the remaining cases A. < 0, d = 1 or 
d > 1; A" > 0, d < -1 and A. = 0, A I  < 0, can be found from the symmetry property. 

The distribution P l ( A )  forp = 3 is encountered in several recent publications (Kane- 
yoshi 1988a, b) where the critical temperature is determined within the effective field 
approximation. 

Part of the critical surface as a function of the mean crystal field A. and the fluctuation 
range A1 in the case of the uniform distribution is plotted in figure 4. It is a pair function 
with respect to A l .  The critical temperature vanishes along the line 

(28) A , =  (2 -- ea,, 1) A1 = 0.105662432 A l .  

It is interesting to note that for positive A, the domain of the ordered phase is 
enlarged and T, is increased with the rise in the range of fluctuations. 

In summary, under the restriction (9) on the parameters of the system, the critical 
temperature for the random crystal field Blume-Emery-Griffiths model in the case of 
complete thermal equilibrium has been obtained exactly for an arbitrary distribution 
P(A)  of the crystal field interaction. As it was argued by Thorpe and Beeman (1976) for 
the random exchange interaction model, the results for the annealed case may serve as 
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an approximation for the physically more interesting case of quenched disorder. One 
may hope that this is the case also when the crystal field is random. 

At least two further developments appear to be possible. The essential new ingredient 
for the exact mapping onto an exactly solved model was the identity ( 5 ) .  This expression 
can take only two values for S = 0 and S = +1. The same property exists for similar 
model with spin-one random biquadratic exchange or for the spin4 Ising model in a 
random field. Unfortunately the latter model would be mapped onto the Ising model in 
an external field whose exact solution is not known. 
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